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Critical Percolation on the Torus 
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We compute the various crossing probabilities defined by R. Langlands, 
P. Pouliot, and Y. Saint-Aubin for the critical percolation on the torus. 
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Langlands et al. (LPS) tS~ defined a certain crossing probability for the criti- 
cal percolation on any Riemann surface. Define a lattice on the Riemann 
surface as a pullback of the standard square lattice on the complex plane 
by a meromorphic function on the Riemann surface. At each bond (or site), 
assign a certain probability of being open. Then for each configuration s of 
open bonds (sites) there is a collection X~ consisting of clusters of open 
bonds (or sites). The homology group H(X,)  with integer coefficients can 
then be linearly mapped into the homology group H(R) of the Riemann 
surface. Then we can ask for the probability that a certain subgroup of 
H(R) will lie in the image of some linear map. They expect the resulting 
probability to be conformally invariant and independent of the mero- 
morphic map. 

In a related work, Cardy t-'~ formulated the probability of a crossing 
between two curves on the boundary of a rectangle in the critical per- 
colation as a correlation function of the Q-state Potts model as Q---, 1. 
Using the techniques of conformal field theory, he computed the crossing 
probability. 

In related work, di Francesco et aL (3) computed the partition function 
of the Q-state Potts model on the torus by reducing it to calculations 
involving the Gaussian functional integral. They first formulated the 
Q-state Potts model as a six-vertex model. Since this particular six-vertex 
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model, namely the F-model, renormalizes to a Gaussian free field, they 
were able to compute the partition function on the torus. Although they 
only calculate the partition function by summing over all configurations, it 
turns out that their analysis can be adapted to summations over a restric- 
ted class of configurations which is required to compute the various LPS 
crossing probabilities on the torus. In this way we evaluate the LPS cros- 
sing probabilities with respect to all subgroups of the homology group of 
the torus, at the continuum limit [Eq. (3.16)]. However, we compute the 
LPS crossing probability with respect to a lattice different from the 
pullback lattice as defined above. A natural lattice reflecting the complex 
structure exists on the torus at the continuum limit (Section 2). The results 
are in excellent agreement with the numerical data obtained by Langlands 
et al. Moreover, as expected, the LPS crossing probabilities are modular 
invariant. 

In fact we feel that this technique can be used to evaluate the LPS 
crossing probability on all Riemann surface with genus g > 1 since all com- 
putations reduce essentially to evaluations of some Gaussian functional 
integral. We are currently investigating this. 

1. G A U S S I A N  FREE FIELD T H E O R Y  

The action of the Gaussian free field theory is given by 

g I IV~~ (1.1) 

where the integral is taken over the torus T. A Gaussian functional integral 
is then given by 

Zm..,,(g) = f  D~o e -~ (1.2) 

where the multivalued function ~o picks up an additive constant 2~m 
(2~m') as ~0 is transported along the cycle 1 (3). Using the ~-function 
regularization (see, for example, ref. 4), we find that the functional integral 
reduces to 

_ x/g exp 7tg [m,2+m2(~+~)_2~,mm,] } (1.3) Z,,.,,(g) - z~/2q(q) fl(q) I - ~--~ 

where the Dedekind eta function r/(q) is given by 

q(q)=ql/24 f i  (1 _qk), q=e2~ (1.4) 
k = l  



Crit ical  Percolat ion on the  Torus 1169 

A modular invariant Coulomb partition can be constructed by sum- 
ming over m', m: 

Z c [ g , f ] = f  ~ Z,,,,,(g) (1.5) 
m ' ,  m ~ .ffZ 

2. LATTICE ON THE TORUS 

Langlands et al. define a percolation on a Riemann surface by taking 
any meromorphic function from the Riemann surface to the complex plane 
and puling back the square lattice from the plane to. the Riemann surface. 

On the torus we can find a lattice (at least at the continuum limit) in 
another way. Take a cylinder with circumference 1 and some height h. If 
the height h is 1, then we can put n squares along the circumference and 
n squares along the height and identify the top and bottom of the cylinder. 
We then take the continuum limit n --* ~ .  If the height h is some irrational 
number, then we can approximate it by a sequence of rational numbers 
mi/n i a s  i ~  oo. Put ni squares along the circumference and mi squares 
along the height and identify the top and the bottom of the cylinder. We 
then take the continuum limit as i ~ o o .  Have we exhausted all 
possibilities? We can give a different identification at the top and the 
bottom by twisting a certain length 0. If we go a length one, then we have 
made a complete turn. To make a twist of irrational length 0, we make a 
rational approximation as in the case of the irrational height and take the 
continuum limit. In this way we have exhausted all possible tori by taking 
all possible (h, 0). In the standard discussion all tori are realized as the 
complex plane moded out by a lattice C/Z + Zz. The two descriptions are 
related by the equation z = 0 + ih. This construction can be realized on 
higher compact Riemann surfaces, and we are currently formulating this. 

3. PERCOLATION ON THE TORUS 

We adapt the techniques used by di Francesco et al. ~31 to compute all 
the LPS crossing probabilities on the torus with respect to the lattice 
described above at the continuum limit. 

Since the percolation probabilities can be written in terms of the parti- 
tion function of the Q-state Potts model, tLS~ we first describe the Q-state 
Potts model on th.e torus. Let there be a lattice L on a torus such that there 
are Q possible values at each site. Then the partition function is the 
summation over some class of configurations 

Z, a Q = ~  [ -  1 6 qj)] (3.1) exp R E  (q,, 
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where the delta function is 0 if the nearest neighbor pair differs in value and 
1 otherwise. Letting ,A/'~ be the number of bonds in all the clusters and ~V'~e 
be the number of connected components (a connected component can be 
either an isolated point or a cluster of bonds), it is well known (1,5) that this 
expression can be rewritten as 

.L, eQ = ~ (1 - e -  I/T).,t"~ Q.,~ (3.2) 

By restricting the sum in Eq. (3.2) to some class of configurations con- 
sisting of clusters of bonds and isolated points, all the LPS crossing 
probabilities can be realized. In the percolation theory, a collection of all 
open bonds X~ with respect to a configuration s gives rise to a linear map 
H(X~) ~ H(T) of homology groups with integer coefficients. The probabil- 
ity that a given subgroup G lies in an image of some map is denoted by 
n(G). A given subgroup must be {0}, Z •  Z, or a subgroup generated by 
(a, b ) E Z •  It is not difficult to see that a and b must be relatively prime 
if it is to have a nonzero probability. 

Thus, 

~ ( 0 )  = 

~(Z x Z) = 

n(a, b ) =  

(1 - e-l/r).,:~ Q.,~ (3.3) 
c l u s t e r s  h o m o t o p i r  to  a p o i n t  

( 1 - e - I / r ) ' " ~ a  "'~ (3.4) 
c lus t e r s  tha t  h a v e  c ross  t o p o l o g y  

(1 - e - l / r )  :~' Q"~ (3.5) 
n o n - s e l f - i n t e r s e c t i n g  c l u s t e r s  t h a t  wrap 

a r o u n d  the  t w o  cycles  u a n d  h t i m e s  

as Q--* 1. The configurations that arises in the sum (3.3) have clusters 
which are homotopic to a point. In other words, the clusters can be con- 
tinuously deformed to a point. The configurations that arises in the sum 
(3.4) must contain a cluster of the cross topology type. These clusters are 
formed from two independent cycles which have a nontrivial intersection. 
In the case a = I and b = - I  in the sum (3.5), the configurations must con- 
tain a cluster which goes once around each cycle. We have chosen the sign 
convention of a and b so that going in the positive direction along 1 is 
positive and going in the negative r direction is positive when the torus is 
viewed as C/Z + Zz. See Figs. 1 and 2. 

To make connections with the Gaussian free field theory, the partition 
functions of the Q-state Potts model must be formulated as a six-vertex 
model. (~ We discuss the relevant features of this transformation. We first 
form another lattice L'  by connecting the four midpoints of the four bonds 
of a face of the original lattice L. Thus another square lattice L'  results. 
A polygonal decomposition can be made by splitting each midpoint to 
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form either two disjoint squares or an eight-sided polygon. A cluster then 
corresponds to a long polygon formed by the bonds of the new lattice L'. 
Letting Jds, be the number  of sites in the original lattice L and JG, the 
number of polygons (note that an isolated point corresponds to a square), 
we have the following topological facts. If a configuration has a cross 
topology, the Euler relation 

Y~. = JV~ + 2JV'~ - ~:~ - 2 (3.6) 

holds. The configuration in Fig. 3 contains a cluster of the cross topology 
type. We can directly compute  JV;~ = 28, Jff~ = 38, ~('.~ = 64, and Jt~, = 38, 
thus confirming the validity of the formula (3.6) in this instance. See ref. 3 
for more details. Otherwise we have the standard Euler relation ~'~ 

~.+, = ,/v~ + 2Jv% - ~.~f 

Inserting these relations into (3.3)-(3.5), we generically get 

= Q.,:~./2 ~ E(1 - e -  l/r) Q - l / z ] . ,  ~ Q,,>/2 

(3.7) 

(3.8) 

A direction can be assigned to each polygon in a polygonal decom- 
position by putting arrows on the bonds of the new lattice L'. A configura- 

u,@ 
.1@) 

Fig. 1. (a)The configurations in Eq. (3.3) have clusters homotopic to a point. (b)The con- 
figurations in Eq. (3.4) must contain a cluster of the cross topology type. (c) The configura- 
tions in Eq. (3.5) must contain a cluster that goes around both cycles once if we, for example, 
l e ta= l  a n d b = - l .  
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tion then consists of arrows placed on the new latt ice such that  two arrows 
come in and out  at any site. If each of the six types of the possible arrow 
configurat ions at  a site is given a certain weight, (j) the par t i t ion  functions 
can be formulated as a summat ion  over  all a r row configurations.  Since the 
t ransformat ion  from the Q-state Pot ts  model  to the six-vertex model  is 
discussed at length in ref. 1, p. 323, we will omit  it. 

Alternatively,  the six-vertex model  can be formulated (6) by put t ing an 
integer mult iple of 7z/2 at each face of the new latt ice L '  such that  the 
values on two neighbor ing faces differ by +7r/2. A par t icu lar  a r row con- 
figuration of the six-vertex model  can be reproduced  by put t ing a higher 
value on the left of  each arrow. 

The restricted summat ions  in Eqs. (3.3)-(3.5) turn into summat ions  
over certain bounda ry  condi t ions  due to  a topologica l  consequence. (3) 
A configurat ion having Y. ei or iented polygons  wrapping  the torus a times 
a long cycle 1 and b times along cycle r has a bounda ry  condi t ion  

6 r~ 

(3.9) 
7[ 

62qg=~a ~ ei 

We choose the sign convention so that this curve (which is the same curve as the one 
in Fig. l(c) on the torus is described as a= 1 and b= - I .  

Fig. 2. 
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The numbers  a and  b must  be relatively pr ime and ei is ___ 1, depending on 
the or ienta t ion  of the polygon.  Each of these polygons  does not  intersect 
the others. We il lustrate this in one instance. Cons ider  the configurat ion 
given in Fig. 4. This contains  a cluster that  goes a round  both  cycles once. 
This cluster can be labeled as a = 1 and b = - 1 .  Cor respond ing  to this 
cluster there are two oriented polygons  (meaning that  a direct ion has been 
assigned to them). Since the two polygons  have the same directions,  they 
have the same signs. (The signs can be determined in one configurat ion,  
and the same convent ion can be used for all subsequent  configurations.)  In 
the present case, we have e~ = +1 and e2=  +1.  Thus, using formula (3.9), 
we find that  the bounda ry  values change by 6Lq~ = ( r t / 2 ) ( - 1 ) ( 2 ) =  - r t  and 
6z~o=(n /2 ) (1 ) (2 )=Tt .  We  can easily check that  an assignment  of + n / 2  
with respect to this configurat ion leads to a difference in the bounda ry  
values as predicted by 6 ~ 0 =  - r t  and 6_,q~ = n .  

+ + + +  
+ + + + + +  

Fig. 3. The dots on the opposite sides of the torus are identified as the same points. This 
configuration yields .J~7~--38, W..~. = 64, .~,  = 38, and .4~ = 28, thus confirming the formula 
(3.6) in this case. 
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Fix a bounda ry  condi t ion  6j ~o = ltm and 62~o = rcm'. Assume either m 
or  m' is not  zero. This means that  the sum Z ei in (3.9) is nonzero.  Since 
each ~i counts  an or iented polygon not  homotop ic  to a point,  there must  
be an or iented po lygon  not  homotop ic  to a point.  Then an or iented 
polygon not  homotop ic  to a point  is present.  The Gauss ian  expression 

(g) 
where the coupl ing constant  g is given by ~61 

Q=2+2cos(rcg/2), g ~  [ 2 , 4 ]  (3.tt) 

has a factor of I for each of these polygons  while it should have a factor 
of e-+2"% where QI/z= e-,_,;. + e2,;.. To see why this is true, first recall that  

992 + 7r 

Fig. 4. An assignment of multiples of n/2 has boundary values which differ by + n, depend- 
ing on which way we travel. 
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the transformation from the Q-state Potts model to the six-vertex models 
introduces a signed angle (ref. 1, p. 328). In the case of these polygons the 
total signed angle is 0 and not +__2ft. Thus we get an incorrect factor of 
1 = e +-~ instead of the correct factor e -+2";" 

Also if m ' =  m = 0, polygons which have cross topology are present. 
They satisfy a different Euler relation (3.6). Thus the Gaussian expression 
(3.10) has an incorrect factor of 1 instead of Q for each of these polygons. 
However, this problem can be ignored because we take the limit Q --+ 1 in 
the percolation case. 

We remark that the Gaussian expression given by (3.10) and (1.1) is 
assumed to describe the continuum limit behavior. Since this assumption is 
based on the renormalization group arguments, t6~ it is not rigorously true 
(in the mathematical sense). However, as we will see, the agreement 
between computer simulation and the values predicted by the Gaussian 
expression certainly strengthens the validity of this particular renormaliza- 
tion group argument. 

The first defect can be remedied by introducing some factors. Let 
Q1/2=2 cos[(rt/2)eo] and a boundary condition be given by 61~0 =T tin = 
(n/2) b •k= 1 •i and 32t# = rim' = Or/2) a Z~= l el. Since a and b are relatively 
prime (denoted a ^ b = 1, where a A b is the greatest common factor), note 

cos[rreo(m' ^ m)] 
e,=  •  

= cos(2eo ,) 
e l =  _+1 i =  1 

1 ~+ [ e x p ( i r t  ~ ) ( .x ~ ) ]  
=2~.,=_1 ~eo i= te i  +exp --l~eoi=te, 

= Qk/2 (3.12) 

Thus, the correct factor Qk can be reintroduced by putting in the cosine 
factors 

7t(a, b) = Y. Z,,,m(4) cos[neo(rn'^m)] 
m '  = al,  m = bl, l ~  Z 

m '  # a l o r  m # b l  
for  a n y  I ~ Z  

-- ~ Z,,,'.,(4) cos[rt(m'Am)-I 
m ' , r n  E ~ 

(3.13) 
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as Q -o 1. Roughly, the first sum contains terms arising from configurations 
which contain clusters generating the group elements in (a, b). The second 
sum sets the terms arising from configurations which contain clusters not 
homotopic to a point and not of the cross topology type equal to zero by 
setting eo---1. The third sum subtracts terms arising from configurations 
which have clusters with cross topology or homotopic to a point�9 Finally 

.(o) -1 Z - 2 , , , , , ~ z Z , , , , , ( 4 )  cos[rr(m' ^ m)] (3.14) 

By setting eo = 1, all contributions from configurations which have clusters 
not homotopic to a point and not of the cross topology type vanish. The 
factor 1/2 gets rid of the redundancy created by duality. Also by duality, 

n ( z  • z )  = n(0) (3.15) 

Using explicit formulas 

bl= Z Zo , 3,(9-�89 E E 
l e Z  / e Z  l e Z  

- Z Z.2,.b2,(~) + Z Z.,2,+,,.b,2,+,,(~) (3.16) 
I ~ Z  l e Z  

1 8 ~(0)  = ~ ( z  x z )  - ~(Zcl-~, 1 ] - z , . [ ~ ,  .~])1 

Langlands etal. derived some numerical values for these crossing 
probabilities at r = i. The comparison between the theoretical values and 
the numerical values is given Table I. 

Finally, under modular transformations, i.e., r - .  r + 1, r --. - l / r ,  

rr(a, b)l _,/, = ~(b, - a ) l ~  
(3.17) 

n(a, b)l,  + l = rr(a-b,  b)]~ 

Table I. Compar ison B e t w e e n  Numer ica l  and Theoret ica l  Values 

Probability Numerical values Theoretical values 

n(0) 0.3106 0.3095 
n(Zx Z) 0.3101 0.3095 
~(1, 1) 0.0205 0.0209 

n(1, - I )  0.0209 0.0209 
n(I, 0) 0.1693 0.1694 
n(0, 1) 0.1686 0.1694 
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and 

n(O) l  _,/~ = n ( z  x Z ) l  _ ,/~ = n(O) I,  = 7r(Z x Z )  l ,  

~ ( 0 ) I ~ + ,  = 7r(Z x Z ) l , + ,  = 7r(O)l~ = ~ ( z  x Z ) l ~  
(3.18) 
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